El fin de semana pasado, en Francia, tuvieron la primera vuelta de las elecciones presidenciales. Por este motivo, adapto al blog esta entrada sobre sistemas de votación que ya escribí con ocasión de Madrid 2012 y sus Olimpiadas. Veremos cómo el sistema de votación es muy importante para obtener un ganador, hasta el punto de que, en ocasiones, cualquier candidato puede ganar dependiendo de la forma de votar elegida.
Vamos a suponer 5 candidatos (Por orden alfabético, Ana, Beatriz, Carlos, Daniel y Elena) y 15 votantes, cuyos órdenes de preferencia son los siguientes:
7 prefieren: | Ana | Elena | Beatriz | Carlos | Daniel |
3 prefieren: | Beatriz | Elena | Daniel | Ana | Carlos |
2 prefieren: | Carlos | Elena | Daniel | Beatriz | Ana |
2 prefieren: | Daniel | Beatriz | Carlos | Ana | Elena |
1 prefiere: | Elena | Daniel | Beatriz | Ana | Carlos |
Según el sistema utilizado en España, no tendríamos dudas de que la ganadora sería ANA, con 7 votos, seguido de Beatriz con 3, Carlos y Daniel con 2 votos cada uno y, en último lugar, Elena con 1 voto, ya que cada votante solo puede elegir un candidato y votarán a su preferido.
Ahora bien, el sistema de votación utilizado para elegir sede de las Olimpiadas consiste en lo siguiente: Para salir un ganador tiene que tener mayoría absoluta (la mitad más uno) y, en caso de que no ocurra, se elimina el candidato menos votado y se repite la votación. De nuevo, si alguno obtiene mayoría absoluta, es el ganador y si no, se elimina el menos votado, etc. Este proceso tiene un fin, ya que, en el peor de los casos, se irían eliminando candidatos hasta que quedaran dos, y en esta votación el ganador lo hará por mayoría (Suponiendo, claro está, que el número de votantes sea impar. En caso contrario podría haber empate).
Con este sistema y las preferencias anteriores obtendríamos, en la primera votación:
Ana | 7 votos |
Beatriz | 3 votos |
Carlos | 2 votos |
Daniel | 2 votos |
Elena | 1 voto |
No hay ganador, ya que se necesitan 8 votos, de modo que se elimina el que menos votos tiene (Elena) y se repite la votación. Con el orden de preferencia de los votantes, es fácil ver que en la segunda ronda los resultados serán:
Ana | 7 votos |
Beatriz | 3 votos |
Daniel | 3 votos |
Carlos | 2 votos |
(ya que el tipo que votó a Elena prefería en segundo lugar a Daniel). De nuevo no hay ganador y se elimina un candidato, en este caso Carlos. Volvemos a votar y obtenemos:
Ana | 7 votos |
Daniel | 5 votos |
Beatriz | 3 votos |
(ya que los dos que votaban a Carlos también tenían a Daniel como segunda opción, porque Elena ya estaba eliminada) Seguimos sin ganador, pero eliminamos a Beatriz, de modo que quedan Ana y Daniel. En la última votación, como podéis comprobar, gana DANIEL por 8 a 7, obteniendo los 8 votos necesarios y proclamándose vencedor a todos los efectos, a pesar de que solo dos miembros apostaban por él y había 7 que lo consideraban el peor de los 5.
El sistema de votación para las presidenciales de Francia del fin de semana sigue otro método: Se hacen dos vueltas. La primera es eliminatoria, en la que solo quedan los dos candidatos más votados y en la segunda, se elige uno de esos dos. Volvemos a nuestra tabla de preferencias y vemos que en la primera vuelta quedan Ana y Beatriz. En la segunda vuelta, votando solo entre ellas dos, los resultados son:
Beatriz | 8 votos |
Ana | 7 votos |
Ahora ha ganado BEATRIZ, ya que 8 personas la prefieren antes que a Ana. Y, por último, voy a incluir el sistema de votación de Eurovisión, en el que cada votante da puntos a sus preferidos. En este caso, cada votante daría 5 puntos a su preferido, 4 al segundo, 3 al siguiente, 2 después y 1 punto al que crean el peor de los cinco. Si hacéis las cuentas saldrían los siguientes resultados:
Ana | 49 puntos |
Beatriz | 51 puntos |
Carlos | 34 puntos |
Daniel | 36 puntos |
Elena | 55 puntos |
Vemos que entonces ganaría ELENA quedando Beatriz segunda, Ana tercera y Daniel en cuarto lugar. Ya solo falta encontrar un sistema de votación por el que ganara Carlos, que seguro que lo hay, con lo que tendríamos que cualquiera de los cinco puede ganar dependiendo del sistema de votación utilizado. Curioso, ¿verdad?
4 Responses to El más votado